API#

Python API#

Commands

Sensors


Commands#

class IsaacSensorCreatePrim(*args: Any, **kwargs: Any)#

Bases: Command

class IsaacSensorCreateContactSensor(*args: Any, **kwargs: Any)#

Bases: Command

class IsaacSensorCreateImuSensor(*args: Any, **kwargs: Any)#

Bases: Command


Sensors#

class ContactSensor(
prim_path: str,
name: str | None = 'contact_sensor',
frequency: int | None = None,
dt: float | None = None,
translation: ndarray | None = None,
position: ndarray | None = None,
min_threshold: float | None = None,
max_threshold: float | None = None,
radius: float | None = None,
)#

Bases: BaseSensor

initialize(physics_sim_view=None) None#

Create a physics simulation view if not passed and using PhysX tensor API

Note

If the prim has been added to the world scene (e.g., world.scene.add(prim)), it will be automatically initialized when the world is reset (e.g., world.reset()).

Parameters:

physics_sim_view (omni.physics.tensors.SimulationView, optional) – current physics simulation view. Defaults to None.

Example:

>>> prim.initialize()
get_current_frame() None#
add_raw_contact_data_to_frame() None#
remove_raw_contact_data_from_frame() None#
resume() None#
pause() None#
is_paused() bool#
set_frequency(value: float) None#
get_frequency() int#
get_dt() float#
set_dt(value: float) None#
get_radius() float#
set_radius(value: float) None#
get_min_threshold() float#
set_min_threshold(value: float) None#
get_max_threshold() float#
apply_visual_material(
visual_material: VisualMaterial,
weaker_than_descendants: bool = False,
) None#

Apply visual material to the held prim and optionally its descendants.

Parameters:
  • visual_material (VisualMaterial) – visual material to be applied to the held prim. Currently supports PreviewSurface, OmniPBR and OmniGlass.

  • weaker_than_descendants (bool, optional) – True if the material shouldn’t override the descendants materials, otherwise False. Defaults to False.

Example:

>>> from isaacsim.core.api.materials import OmniGlass
>>>
>>> # create a dark-red glass visual material
>>> material = OmniGlass(
...     prim_path="/World/material/glass",  # path to the material prim to create
...     ior=1.25,
...     depth=0.001,
...     thin_walled=False,
...     color=np.array([0.5, 0.0, 0.0])
... )
>>> prim.apply_visual_material(material)
get_applied_visual_material() VisualMaterial#

Return the current applied visual material in case it was applied using apply_visual_material or it’s one of the following materials that was already applied before: PreviewSurface, OmniPBR and OmniGlass.

Returns:

the current applied visual material if its type is currently supported.

Return type:

VisualMaterial

Example:

>>> # given a visual material applied
>>> prim.get_applied_visual_material()
<isaacsim.core.api.materials.omni_glass.OmniGlass object at 0x7f36263106a0>
get_default_state() XFormPrimState#

Get the default prim states (spatial position and orientation).

Returns:

an object that contains the default state of the prim (position and orientation)

Return type:

XFormPrimState

Example:

>>> state = prim.get_default_state()
>>> state
<isaacsim.core.utils.types.XFormPrimState object at 0x7f33addda650>
>>>
>>> state.position
[-4.5299529e-08 -1.8347054e-09 -2.8610229e-08]
>>> state.orientation
[1. 0. 0. 0.]
get_local_pose() Tuple[ndarray, ndarray]#

Get prim’s pose with respect to the local frame (the prim’s parent frame)

Returns:

first index is the position in the local frame (with shape (3, )). Second index is quaternion orientation (with shape (4, )) in the local frame

Return type:

Tuple[np.ndarray, np.ndarray]

Example:

>>> # if the prim is in position (1.0, 0.5, 0.0) with respect to the world frame
>>> position, orientation = prim.get_local_pose()
>>> position
[0. 0. 0.]
>>> orientation
[0. 0. 0.]
get_local_scale() ndarray#

Get prim’s scale with respect to the local frame (the parent’s frame)

Returns:

scale applied to the prim’s dimensions in the local frame. shape is (3, ).

Return type:

np.ndarray

Example:

>>> prim.get_local_scale()
[1. 1. 1.]
get_visibility() bool#
Returns:

true if the prim is visible in stage. false otherwise.

Return type:

bool

Example:

>>> # get the visible state of an visible prim on the stage
>>> prim.get_visibility()
True
get_world_pose() Tuple[ndarray, ndarray]#

Get prim’s pose with respect to the world’s frame

Returns:

first index is the position in the world frame (with shape (3, )). Second index is quaternion orientation (with shape (4, )) in the world frame

Return type:

Tuple[np.ndarray, np.ndarray]

Example:

>>> # if the prim is in position (1.0, 0.5, 0.0) with respect to the world frame
>>> position, orientation = prim.get_world_pose()
>>> position
[1.  0.5 0. ]
>>> orientation
[1. 0. 0. 0.]
get_world_scale() ndarray#

Get prim’s scale with respect to the world’s frame

Returns:

scale applied to the prim’s dimensions in the world frame. shape is (3, ).

Return type:

np.ndarray

Example:

>>> prim.get_world_scale()
[1. 1. 1.]
is_valid() bool#

Check if the prim path has a valid USD Prim at it

Returns:

True is the current prim path corresponds to a valid prim in stage. False otherwise.

Return type:

bool

Example:

>>> # given an existing and valid prim
>>> prims.is_valid()
True
is_visual_material_applied() bool#

Check if there is a visual material applied

Returns:

True if there is a visual material applied. False otherwise.

Return type:

bool

Example:

>>> # given a visual material applied
>>> prim.is_visual_material_applied()
True
property name: str | None#

Returns: str: name given to the prim when instantiating it. Otherwise None.

Used to query if the prim is a non root articulation link

Returns:

True if the prim itself is a non root link

Return type:

bool

Example:

>>> # for a wrapped articulation (where the root prim has the Physics Articulation Root property applied)
>>> prim.non_root_articulation_link
False
post_reset() None#

Reset the prim to its default state (position and orientation).

Note

For an articulation, in addition to configuring the root prim’s default position and spatial orientation (defined via the set_default_state method), the joint’s positions, velocities, and efforts (defined via the set_joints_default_state method) are imposed

Example:

>>> prim.post_reset()
property prim: pxr.Usd.Prim#

Returns: Usd.Prim: USD Prim object that this object holds.

property prim_path: str#

Returns: str: prim path in the stage

set_default_state(
position: Sequence[float] | None = None,
orientation: Sequence[float] | None = None,
) None#

Set the default state of the prim (position and orientation), that will be used after each reset.

Parameters:
  • position (Optional[Sequence[float]], optional) – position in the world frame of the prim. shape is (3, ). Defaults to None, which means left unchanged.

  • orientation (Optional[Sequence[float]], optional) – quaternion orientation in the world frame of the prim. quaternion is scalar-first (w, x, y, z). shape is (4, ). Defaults to None, which means left unchanged.

Example:

>>> # configure default state
>>> prim.set_default_state(position=np.array([1.0, 0.5, 0.0]), orientation=np.array([1, 0, 0, 0]))
>>>
>>> # set default states during post-reset
>>> prim.post_reset()
set_local_pose(
translation: Sequence[float] | None = None,
orientation: Sequence[float] | None = None,
) None#

Set prim’s pose with respect to the local frame (the prim’s parent frame).

Warning

This method will change (teleport) the prim pose immediately to the indicated value

Parameters:
  • translation (Optional[Sequence[float]], optional) – translation in the local frame of the prim (with respect to its parent prim). shape is (3, ). Defaults to None, which means left unchanged.

  • orientation (Optional[Sequence[float]], optional) – quaternion orientation in the local frame of the prim. quaternion is scalar-first (w, x, y, z). shape is (4, ). Defaults to None, which means left unchanged.

Hint

This method belongs to the methods used to set the prim state

Example:

>>> prim.set_local_pose(translation=np.array([1.0, 0.5, 0.0]), orientation=np.array([1., 0., 0., 0.]))
set_local_scale(
scale: Sequence[float] | None,
) None#

Set prim’s scale with respect to the local frame (the prim’s parent frame).

Parameters:

scale (Optional[Sequence[float]]) – scale to be applied to the prim’s dimensions. shape is (3, ). Defaults to None, which means left unchanged.

Example:

>>> # scale prim 10 times smaller
>>> prim.set_local_scale(np.array([0.1, 0.1, 0.1]))
set_max_threshold(value: float) None#
set_visibility(visible: bool) None#

Set the visibility of the prim in stage

Parameters:

visible (bool) – flag to set the visibility of the usd prim in stage.

Example:

>>> # make prim not visible in the stage
>>> prim.set_visibility(visible=False)
set_world_pose(
position: Sequence[float] | None = None,
orientation: Sequence[float] | None = None,
) None#

Ses prim’s pose with respect to the world’s frame

Warning

This method will change (teleport) the prim pose immediately to the indicated value

Parameters:
  • position (Optional[Sequence[float]], optional) – position in the world frame of the prim. shape is (3, ). Defaults to None, which means left unchanged.

  • orientation (Optional[Sequence[float]], optional) – quaternion orientation in the world frame of the prim. quaternion is scalar-first (w, x, y, z). shape is (4, ). Defaults to None, which means left unchanged.

Hint

This method belongs to the methods used to set the prim state

Example:

>>> prim.set_world_pose(position=np.array([1.0, 0.5, 0.0]), orientation=np.array([1., 0., 0., 0.]))
class EsSensorReading(
is_valid: bool = False,
time: float = 0,
value: float = 0,
)#

Bases: object

class EffortSensor(
prim_path: str,
sensor_period: float = -1,
use_latest_data: bool = False,
enabled: bool = True,
)#

Bases: SingleArticulation

initialize_callbacks() None#
lerp(start: float, end: float, time: float) float#
get_sensor_reading(
interpolation_function=None,
use_latest_data=False,
) <isaacsim.sensors.physics.scripts.effort_sensor.EsSensorReading object at 0x7fdf5cfbfcd0>#
update_dof_name(dof_name: str) None#
change_buffer_size(new_buffer_size: int) None#
apply_action(
control_actions: ArticulationAction,
) None#

Apply joint positions, velocities and/or efforts to control an articulation

Parameters:
  • control_actions (ArticulationAction) – actions to be applied for next physics step.

  • indices (Optional[Union[list, np.ndarray]], optional) – degree of freedom indices to apply actions to. Defaults to all degrees of freedom.

Hint

High stiffness makes the joints snap faster and harder to the desired target, and higher damping smoothes but also slows down the joint’s movement to target

  • For position control, set relatively high stiffness and low damping (to reduce vibrations)

  • For velocity control, stiffness must be set to zero with a non-zero damping

  • For effort control, stiffness and damping must be set to zero

Example:

>>> from isaacsim.core.utils.types import ArticulationAction
>>>
>>> # move all the robot joints to the indicated position
>>> action = ArticulationAction(joint_positions=np.array([0.0, -1.0, 0.0, -2.2, 0.0, 2.4, 0.8, 0.04, 0.04]))
>>> prim.apply_action(action)
>>>
>>> # close the robot fingers: panda_finger_joint1 (7) and panda_finger_joint2 (8) to 0.0
>>> action = ArticulationAction(joint_positions=np.array([0.0, 0.0]), joint_indices=np.array([7, 8]))
>>> prim.apply_action(action)
apply_visual_material(
visual_material: VisualMaterial,
weaker_than_descendants: bool = False,
) None#

Apply visual material to the held prim and optionally its descendants.

Parameters:
  • visual_material (VisualMaterial) – visual material to be applied to the held prim. Currently supports PreviewSurface, OmniPBR and OmniGlass.

  • weaker_than_descendants (bool, optional) – True if the material shouldn’t override the descendants materials, otherwise False. Defaults to False.

Example:

>>> from isaacsim.core.api.materials import OmniGlass
>>>
>>> # create a dark-red glass visual material
>>> material = OmniGlass(
...     prim_path="/World/material/glass",  # path to the material prim to create
...     ior=1.25,
...     depth=0.001,
...     thin_walled=False,
...     color=np.array([0.5, 0.0, 0.0])
... )
>>> prim.apply_visual_material(material)
disable_gravity() None#

Keep gravity from affecting the robot

Example:

>>> prim.disable_gravity()
property dof_names: List[str]#

List of prim names for each DOF.

Returns:

prim names

Return type:

list(string)

Example:

>>> prim.dof_names
['panda_joint1', 'panda_joint2', 'panda_joint3', 'panda_joint4', 'panda_joint5',
 'panda_joint6', 'panda_joint7', 'panda_finger_joint1', 'panda_finger_joint2']
property dof_properties: ndarray#

Articulation DOF properties

DOF properties#

Index

Property name

Description

0

type

DOF type: invalid/unknown/uninitialized (0), rotation (1), translation (2)

1

hasLimits

Whether the DOF has limits

2

lower

Lower DOF limit (in radians or meters)

3

upper

Upper DOF limit (in radians or meters)

4

driveMode

Drive mode for the DOF: force (1), acceleration (2)

5

maxVelocity

Maximum DOF velocity. In radians/s, or stage_units/s

6

maxEffort

Maximum DOF effort. In N or N*stage_units

7

stiffness

DOF stiffness

8

damping

DOF damping

Returns:

named NumPy array of shape (num_dof, 9)

Return type:

np.ndarray

Example:

>>> # get properties for all DOFs
>>> prim.dof_properties
[(1,  True, -2.8973,  2.8973, 1, 1.0000000e+01, 5220., 60000., 3000.)
 (1,  True, -1.7628,  1.7628, 1, 1.0000000e+01, 5220., 60000., 3000.)
 (1,  True, -2.8973,  2.8973, 1, 5.9390470e+36, 5220., 60000., 3000.)
 (1,  True, -3.0718, -0.0698, 1, 5.9390470e+36, 5220., 60000., 3000.)
 (1,  True, -2.8973,  2.8973, 1, 5.9390470e+36,  720., 25000., 3000.)
 (1,  True, -0.0175,  3.7525, 1, 5.9390470e+36,  720., 15000., 3000.)
 (1,  True, -2.8973,  2.8973, 1, 1.0000000e+01,  720.,  5000., 3000.)
 (2,  True,  0.    ,  0.04  , 1, 3.4028235e+38,  720.,  6000., 1000.)
 (2,  True,  0.    ,  0.04  , 1, 3.4028235e+38,  720.,  6000., 1000.)]
>>>
>>> # property names
>>> prim.dof_properties.dtype.names
('type', 'hasLimits', 'lower', 'upper', 'driveMode', 'maxVelocity', 'maxEffort', 'stiffness', 'damping')
>>>
>>> # get DOF upper limits
>>> prim.dof_properties["upper"]
[ 2.8973  1.7628  2.8973 -0.0698  2.8973  3.7525  2.8973  0.04    0.04  ]
>>>
>>> # get the last DOF (panda_finger_joint2) upper limit
>>> prim.dof_properties["upper"][8]  # or prim.dof_properties[8][3]
0.04
enable_gravity() None#

Gravity will affect the robot

Example:

>>> prim.enable_gravity()
get_angular_velocity() ndarray#

Get the angular velocity of the root articulation prim

Returns:

3D angular velocity vector. Shape (3,)

Return type:

np.ndarray

Example:

>>> prim.get_angular_velocity()
[0. 0. 0.]
get_applied_action() ArticulationAction#

Get the last applied action

Returns:

last applied action. Note: a dictionary is used as the object’s string representation

Return type:

ArticulationAction

Example:

>>> # last applied action: joint_positions -> [0.0, -1.0, 0.0, -2.2, 0.0, 2.4, 0.8, 0.04, 0.04]
>>> prim.get_applied_action()
{'joint_positions': [0.0, -1.0, 0.0, -2.200000047683716, 0.0, 2.4000000953674316,
                     0.800000011920929, 0.03999999910593033, 0.03999999910593033],
 'joint_velocities': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
 'joint_efforts': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}
get_applied_joint_efforts(
joint_indices: List | ndarray | None = None,
) ndarray#

Get the efforts applied to the joints set by the set_joint_efforts method

Parameters:

joint_indices (Optional[Union[List, np.ndarray]], optional) – indices to specify which joints to read. Defaults to None (all joints)

Raises:

Exception – If the handlers are not initialized

Returns:

all or selected articulation joint applied efforts

Return type:

np.ndarray

Example:

>>> # get all applied joint efforts
>>> prim.get_applied_joint_efforts()
[ 0.  0.  0.  0.  0.  0.  0.  0.  0.]
>>>
>>> # get finger applied efforts: panda_finger_joint1 (7) and panda_finger_joint2 (8)
>>> prim.get_applied_joint_efforts(joint_indices=np.array([7, 8]))
[0.  0.]
get_applied_visual_material() VisualMaterial#

Return the current applied visual material in case it was applied using apply_visual_material or it’s one of the following materials that was already applied before: PreviewSurface, OmniPBR and OmniGlass.

Returns:

the current applied visual material if its type is currently supported.

Return type:

VisualMaterial

Example:

>>> # given a visual material applied
>>> prim.get_applied_visual_material()
<isaacsim.core.api.materials.omni_glass.OmniGlass object at 0x7f36263106a0>
get_articulation_body_count() int#

Get the number of bodies (links) that make up the articulation

Returns:

amount of bodies

Return type:

int

Example:

>>> prim.get_articulation_body_count()
12
get_articulation_controller() ArticulationController#

Get the articulation controller

Note

If no articulation_controller was passed during class instantiation, a default controller of type ArticulationController (a Proportional-Derivative controller that can apply position targets, velocity targets and efforts) will be used

Returns:

articulation controller

Return type:

ArticulationController

Example:

>>> prim.get_articulation_controller()
<isaacsim.core.api.controllers.articulation_controller.ArticulationController object at 0x7f04a0060190>
get_default_state() XFormPrimState#

Get the default prim states (spatial position and orientation).

Returns:

an object that contains the default state of the prim (position and orientation)

Return type:

XFormPrimState

Example:

>>> state = prim.get_default_state()
>>> state
<isaacsim.core.utils.types.XFormPrimState object at 0x7f33addda650>
>>>
>>> state.position
[-4.5299529e-08 -1.8347054e-09 -2.8610229e-08]
>>> state.orientation
[1. 0. 0. 0.]
get_dof_index(dof_name: str) int#

Get a DOF index given its name

Parameters:

dof_name (str) – name of the DOF

Returns:

DOF index

Return type:

int

Example:

>>> prim.get_dof_index("panda_finger_joint2")
8
get_enabled_self_collisions() int#

Get the enable self collisions flag (physxArticulation:enabledSelfCollisions)

Returns:

self collisions flag (boolean interpreted as int)

Return type:

int

Example:

>>> prim.get_enabled_self_collisions()
0
get_joint_positions(
joint_indices: List | ndarray | None = None,
) ndarray#

Get the articulation joint positions

Parameters:

joint_indices (Optional[Union[List, np.ndarray]], optional) – indices to specify which joints to read. Defaults to None (all joints)

Returns:

all or selected articulation joint positions

Return type:

np.ndarray

Example:

>>> # get all joint positions
>>> prim.get_joint_positions()
[ 1.1999920e-02 -5.6962633e-01  1.3480479e-08 -2.8105433e+00  6.8284894e-06
  3.0301569e+00  7.3234749e-01  3.9912373e-02  3.9999999e-02]
>>>
>>> # get finger positions: panda_finger_joint1 (7) and panda_finger_joint2 (8)
>>> prim.get_joint_positions(joint_indices=np.array([7, 8]))
[0.03991237  3.9999999e-02]
get_joint_velocities(
joint_indices: List | ndarray | None = None,
) ndarray#

Get the articulation joint velocities

Parameters:

joint_indices (Optional[Union[List, np.ndarray]], optional) – indices to specify which joints to read. Defaults to None (all joints)

Returns:

all or selected articulation joint velocities

Return type:

np.ndarray

Example:

>>> # get all joint velocities
>>> prim.get_joint_velocities()
[ 1.91603772e-06 -7.67638255e-03 -2.19138826e-07  1.10636465e-02 -4.63412944e-05
  3.48245539e-02  8.84692147e-02  5.40335372e-04 1.02849208e-05]
>>>
>>> # get finger velocities: panda_finger_joint1 (7) and panda_finger_joint2 (8)
>>> prim.get_joint_velocities(joint_indices=np.array([7, 8]))
[5.4033537e-04 1.0284921e-05]
get_joints_default_state() JointsState#

Get the default joint states (positions and velocities).

Returns:

an object that contains the default joint positions and velocities

Return type:

JointsState

Example:

>>> state = prim.get_joints_default_state()
>>> state
<isaacsim.core.utils.types.JointsState object at 0x7f04a0061240>
>>>
>>> state.positions
[ 0.012  -0.57000005  0.  -2.81  0.  3.037  0.785398  0.04  0.04 ]
>>> state.velocities
[0. 0. 0. 0. 0. 0. 0. 0. 0.]
get_joints_state() JointsState#

Get the current joint states (positions and velocities)

Returns:

an object that contains the current joint positions and velocities

Return type:

JointsState

Example:

>>> state = prim.get_joints_state()
>>> state
<isaacsim.core.utils.types.JointsState object at 0x7f02f6df57b0>
>>>
>>> state.positions
[ 1.1999920e-02 -5.6962633e-01  1.3480479e-08 -2.8105433e+00 6.8284894e-06
  3.0301569e+00  7.3234749e-01  3.9912373e-02  3.9999999e-02]
>>> state.velocities
[ 1.91603772e-06 -7.67638255e-03 -2.19138826e-07  1.10636465e-02 -4.63412944e-05
  245539e-02  8.84692147e-02  5.40335372e-04  1.02849208e-05]
get_linear_velocity() ndarray#

Get the linear velocity of the root articulation prim

Returns:

3D linear velocity vector. Shape (3,)

Return type:

np.ndarray

Example:

>>> prim.get_linear_velocity()
[0. 0. 0.]
get_local_pose() Tuple[ndarray, ndarray]#

Get prim’s pose with respect to the local frame (the prim’s parent frame)

Returns:

first index is the position in the local frame (with shape (3, )). Second index is quaternion orientation (with shape (4, )) in the local frame

Return type:

Tuple[np.ndarray, np.ndarray]

Example:

>>> # if the prim is in position (1.0, 0.5, 0.0) with respect to the world frame
>>> position, orientation = prim.get_local_pose()
>>> position
[0. 0. 0.]
>>> orientation
[0. 0. 0.]
get_local_scale() ndarray#

Get prim’s scale with respect to the local frame (the parent’s frame)

Returns:

scale applied to the prim’s dimensions in the local frame. shape is (3, ).

Return type:

np.ndarray

Example:

>>> prim.get_local_scale()
[1. 1. 1.]
get_measured_joint_efforts(
joint_indices: List | ndarray | None = None,
) ndarray#

Returns the efforts computed/measured by the physics solver of the joint forces in the DOF motion direction

Parameters:

joint_indices (Optional[Union[List, np.ndarray]], optional) – indices to specify which joints to read. Defaults to None (all joints)

Raises:

Exception – If the handlers are not initialized

Returns:

all or selected articulation joint measured efforts

Return type:

np.ndarray

Example:

>>> # get all joint efforts
>>> prim.get_measured_joint_efforts()
[ 2.7897308e-06 -6.9083519e+00 -3.6398471e-06  1.9158335e+01 -4.3552645e-06
  1.1866090e+00 -4.7079347e-06  3.2339853e-04 -3.2044132e-04]
>>>
>>> # get finger efforts: panda_finger_joint1 (7) and panda_finger_joint2 (8)
>>> prim.get_measured_joint_efforts(joint_indices=np.array([7, 8]))
[ 0.0003234  -0.00032044]
get_measured_joint_forces(
joint_indices: List | ndarray | None = None,
) ndarray#

Get the measured joint reaction forces and torques (link incoming joint forces and torques) to external loads

Note

Since the name->index map for joints has not been exposed yet, it is possible to access the joint names and their indices through the articulation metadata.

prim._articulation_view._metadata.joint_names  # list of names
prim._articulation_view._metadata.joint_indices  # dict of name: index

To retrieve a specific row for the link incoming joint force/torque use joint_index + 1

Parameters:

joint_indices (Optional[Union[List, np.ndarray]], optional) – indices to specify which joints to read. Defaults to None (all joints)

Raises:

Exception – If the handlers are not initialized

Returns:

measured joint forces and torques. Shape is (num_joint + 1, 6). Row index 0 is the incoming joint of the base link. For the last dimension the first 3 values are for forces and the last 3 for torques

Return type:

np.ndarray

Example:

>>> # get all measured joint forces and torques
>>> prim.get_measured_joint_forces()
[[ 0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00]
 [ 1.4995076e+02  4.2574748e-06  5.6364370e-04  4.8701895e-05 -6.9072924e+00  3.1881387e-05]
 [-2.8971717e-05 -1.0677823e+02 -6.8384506e+01 -6.9072924e+00 -5.4927128e-05  6.1222494e-07]
 [ 8.7120995e+01 -4.3871860e-05 -5.5795174e+01  5.3687054e-05 -2.4538563e+01  1.3333466e-05]
 [ 5.3519474e-05 -4.8109909e+01  6.0709282e+01  1.9157074e+01 -5.9258469e-05  8.2744418e-07]
 [-3.1691040e+01  2.3313689e-04  3.9990173e+01 -5.8968733e-05 -1.1863431e+00  2.2335558e-05]
 [-1.0809851e-04  1.5340537e+01 -1.5458489e+01  1.1863426e+00  6.1094368e-05 -1.5940281e-05]
 [-7.5418940e+00 -5.0814648e+00 -5.6512990e+00 -5.6385466e-05  3.8859999e-01 -3.4943256e-01]
 [ 4.7421460e+00 -3.1945827e+00  3.5528181e+00  5.5852943e-05  8.4794536e-03  7.6405057e-03]
 [ 4.0760727e+00  2.1640673e-01 -4.0513167e+00 -5.9565349e-04  1.1407082e-02  2.1432268e-06]
 [ 5.1680198e-03 -9.7754575e-02 -9.7093947e-02 -8.4155556e-12 -1.2910691e-12 -1.9347857e-11]
 [-5.1910793e-03  9.7588278e-02 -9.7106412e-02  8.4155573e-12  1.2910637e-12 -1.9347855e-11]]
>>>
>>> # get measured joint force and torque for the fingers
>>> metadata = prim._articulation_view._metadata
>>> joint_indices = 1 + np.array([
...     metadata.joint_indices["panda_finger_joint1"],
...     metadata.joint_indices["panda_finger_joint2"],
... ])
>>> joint_indices
[10 11]
>>> prim.get_measured_joint_forces(joint_indices)
[[ 5.1680198e-03 -9.7754575e-02 -9.7093947e-02 -8.4155556e-12 -1.2910691e-12 -1.9347857e-11]
 [-5.1910793e-03  9.7588278e-02 -9.7106412e-02  8.4155573e-12  1.2910637e-12 -1.9347855e-11]]
get_position_residual(
report_max: bool | None = True,
) float#

Get physics solver position residuals for articulations. This is the residual across all joints that are part of articulations.

The solver residuals are computed according to impulse variation normalized by the effective mass.

Parameters:

report_max (Optional[bool]) – whether to report max or RMS residual. Defaults to True, i.e. max criteria

Returns:

solver position/velocity max/rms residual.

Return type:

float

get_sleep_threshold() float#

Get the threshold for articulations to enter a sleep state

Search for Articulations and Sleeping in PhysX docs for more details

Returns:

sleep threshold

Return type:

float

Example:

>>> prim.get_sleep_threshold()
0.005
get_solver_position_iteration_count() int#

Get the solver (position) iteration count for the articulation

The solver iteration count determines how accurately contacts, drives, and limits are resolved. Search for Solver Iteration Count in PhysX docs for more details.

Returns:

position iteration count

Return type:

int

Example:

>>> prim.get_solver_position_iteration_count()
32
get_solver_velocity_iteration_count() int#

Get the solver (velocity) iteration count for the articulation

The solver iteration count determines how accurately contacts, drives, and limits are resolved. Search for Solver Iteration Count in PhysX docs for more details.

Returns:

velocity iteration count

Return type:

int

Example:

>>> prim.get_solver_velocity_iteration_count()
32
get_stabilization_threshold() float#

Get the mass-normalized kinetic energy below which the articulation may participate in stabilization

Search for Stabilization Threshold in PhysX docs for more details

Returns:

stabilization threshold

Return type:

float

Example:

>>> prim.get_stabilization_threshold()
0.0009999999
get_velocity_residual(
report_max: bool | None = True,
) float#

Get physics solver velocity residuals for articulations. This is the residual across all joints that are part of articulations.

The solver residuals are computed according to impulse variation normalized by the effective mass.

Parameters:

report_max (Optional[bool]) – whether to report max or RMS residual. Defaults to True, i.e. max criteria

Returns:

solver velocity max/rms residual.

Return type:

float

get_visibility() bool#
Returns:

true if the prim is visible in stage. false otherwise.

Return type:

bool

Example:

>>> # get the visible state of an visible prim on the stage
>>> prim.get_visibility()
True
get_world_pose() Tuple[ndarray, ndarray]#

Get prim’s pose with respect to the world’s frame

Returns:

first index is the position in the world frame (with shape (3, )). Second index is quaternion orientation (with shape (4, )) in the world frame

Return type:

Tuple[np.ndarray, np.ndarray]

Example:

>>> # if the prim is in position (1.0, 0.5, 0.0) with respect to the world frame
>>> position, orientation = prim.get_world_pose()
>>> position
[1.  0.5 0. ]
>>> orientation
[1. 0. 0. 0.]
get_world_scale() ndarray#

Get prim’s scale with respect to the world’s frame

Returns:

scale applied to the prim’s dimensions in the world frame. shape is (3, ).

Return type:

np.ndarray

Example:

>>> prim.get_world_scale()
[1. 1. 1.]
get_world_velocity() ndarray#

Get the articulation root velocity

Returns:

current velocity of the the root prim. Shape (3,).

Return type:

np.ndarray

property handles_initialized: bool#

Check if articulation handler is initialized

Returns:

whether the handler was initialized

Return type:

bool

Example:

>>> prim.handles_initialized
True
initialize(
physics_sim_view: omni.physics.tensors.SimulationView | None = None,
) None#

Create a physics simulation view if not passed and an articulation view using PhysX tensor API

Note

If the articulation has been added to the world scene (e.g., world.scene.add(prim)), it will be automatically initialized when the world is reset (e.g., world.reset()).

Warning

This method needs to be called after each hard reset (e.g., Stop + Play on the timeline) before interacting with any other class method.

Parameters:

physics_sim_view (omni.physics.tensors.SimulationView, optional) – current physics simulation view. Defaults to None.

Example:

>>> prim.initialize()
is_valid() bool#

Check if the prim path has a valid USD Prim at it

Returns:

True is the current prim path corresponds to a valid prim in stage. False otherwise.

Return type:

bool

Example:

>>> # given an existing and valid prim
>>> prims.is_valid()
True
is_visual_material_applied() bool#

Check if there is a visual material applied

Returns:

True if there is a visual material applied. False otherwise.

Return type:

bool

Example:

>>> # given a visual material applied
>>> prim.is_visual_material_applied()
True
property name: str | None#

Returns: str: name given to the prim when instantiating it. Otherwise None.

Used to query if the prim is a non root articulation link

Returns:

True if the prim itself is a non root link

Return type:

bool

Example:

>>> # for a wrapped articulation (where the root prim has the Physics Articulation Root property applied)
>>> prim.non_root_articulation_link
False
property num_bodies: int#

Number of articulation links

Returns:

number of links

Return type:

int

Example:

>>> prim.num_bodies
9
property num_dof: int#

Number of DOF of the articulation

Returns:

amount of DOFs

Return type:

int

Example:

>>> prim.num_dof
9
post_reset() None#

Reset the prim to its default state (position and orientation).

Note

For an articulation, in addition to configuring the root prim’s default position and spatial orientation (defined via the set_default_state method), the joint’s positions, velocities, and efforts (defined via the set_joints_default_state method) are imposed

Example:

>>> prim.post_reset()
property prim: pxr.Usd.Prim#

Returns: Usd.Prim: USD Prim object that this object holds.

property prim_path: str#

Returns: str: prim path in the stage

set_angular_velocity(velocity: ndarray) None#

Set the angular velocity of the root articulation prim

Warning

This method will immediately set the articulation state

Parameters:

velocity (np.ndarray) – 3D angular velocity vector. Shape (3,)

Hint

This method belongs to the methods used to set the articulation kinematic state:

set_linear_velocity, set_angular_velocity, set_joint_positions, set_joint_velocities, set_joint_efforts

Example:

>>> prim.set_angular_velocity(np.array([0.1, 0.0, 0.0]))
set_default_state(
position: Sequence[float] | None = None,
orientation: Sequence[float] | None = None,
) None#

Set the default state of the prim (position and orientation), that will be used after each reset.

Parameters:
  • position (Optional[Sequence[float]], optional) – position in the world frame of the prim. shape is (3, ). Defaults to None, which means left unchanged.

  • orientation (Optional[Sequence[float]], optional) – quaternion orientation in the world frame of the prim. quaternion is scalar-first (w, x, y, z). shape is (4, ). Defaults to None, which means left unchanged.

Example:

>>> # configure default state
>>> prim.set_default_state(position=np.array([1.0, 0.5, 0.0]), orientation=np.array([1, 0, 0, 0]))
>>>
>>> # set default states during post-reset
>>> prim.post_reset()
set_enabled_self_collisions(flag: bool) None#

Set the enable self collisions flag (physxArticulation:enabledSelfCollisions)

Parameters:

flag (bool) – whether to enable self collisions

Example:

>>> prim.set_enabled_self_collisions(True)
set_joint_efforts(
efforts: ndarray,
joint_indices: List | ndarray | None = None,
) None#

Set the articulation joint efforts

Note

This method can be used for effort control. For this purpose, there must be no joint drive or the stiffness and damping must be set to zero.

Parameters:
  • efforts (np.ndarray) – articulation joint efforts

  • joint_indices (Optional[Union[list, np.ndarray]], optional) – indices to specify which joints to manipulate. Defaults to None (all joints)

Hint

This method belongs to the methods used to set the articulation kinematic state:

set_linear_velocity, set_angular_velocity, set_joint_positions, set_joint_velocities, set_joint_efforts

Example:

>>> # set all the robot joint efforts to 0.0
>>> prim.set_joint_efforts(np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]))
>>>
>>> # set only the fingers efforts: panda_finger_joint1 (7) and panda_finger_joint2 (8) to 10
>>> prim.set_joint_efforts(np.array([10, 10]), joint_indices=np.array([7, 8]))
set_joint_positions(
positions: ndarray,
joint_indices: List | ndarray | None = None,
) None#

Set the articulation joint positions

Warning

This method will immediately set (teleport) the affected joints to the indicated value. Use the apply_action method to control robot joints.

Parameters:
  • positions (np.ndarray) – articulation joint positions

  • joint_indices (Optional[Union[list, np.ndarray]], optional) – indices to specify which joints to manipulate. Defaults to None (all joints)

Hint

This method belongs to the methods used to set the articulation kinematic state:

set_linear_velocity, set_angular_velocity, set_joint_positions, set_joint_velocities, set_joint_efforts

Example:

>>> # set all the robot joints
>>> prim.set_joint_positions(np.array([0.0, -1.0, 0.0, -2.2, 0.0, 2.4, 0.8, 0.04, 0.04]))
>>>
>>> # set only the fingers in closed position: panda_finger_joint1 (7) and panda_finger_joint2 (8) to 0.0
>>> prim.set_joint_positions(np.array([0.04, 0.04]), joint_indices=np.array([7, 8]))
set_joint_velocities(
velocities: ndarray,
joint_indices: List | ndarray | None = None,
) None#

Set the articulation joint velocities

Warning

This method will immediately set the affected joints to the indicated value. Use the apply_action method to control robot joints.

Parameters:
  • velocities (np.ndarray) – articulation joint velocities

  • joint_indices (Optional[Union[list, np.ndarray]], optional) – indices to specify which joints to manipulate. Defaults to None (all joints)

Hint

This method belongs to the methods used to set the articulation kinematic state:

set_linear_velocity, set_angular_velocity, set_joint_positions, set_joint_velocities, set_joint_efforts

Example:

>>> # set all the robot joint velocities to 0.0
>>> prim.set_joint_velocities(np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]))
>>>
>>> # set only the fingers velocities: panda_finger_joint1 (7) and panda_finger_joint2 (8) to -0.01
>>> prim.set_joint_velocities(np.array([-0.01, -0.01]), joint_indices=np.array([7, 8]))
set_joints_default_state(
positions: ndarray | None = None,
velocities: ndarray | None = None,
efforts: ndarray | None = None,
) None#

Set the joint default states (positions, velocities and/or efforts) to be applied after each reset.

Note

The default states will be set during post-reset (e.g., calling .post_reset() or world.reset() methods)

Parameters:
  • positions (Optional[np.ndarray], optional) – joint positions. Defaults to None.

  • velocities (Optional[np.ndarray], optional) – joint velocities. Defaults to None.

  • efforts (Optional[np.ndarray], optional) – joint efforts. Defaults to None.

Example:

>>> # configure default joint states
>>> prim.set_joints_default_state(
...     positions=np.array([0.0, -1.0, 0.0, -2.2, 0.0, 2.4, 0.8, 0.04, 0.04]),
...     velocities=np.zeros(shape=(prim.num_dof,)),
...     efforts=np.zeros(shape=(prim.num_dof,))
... )
>>>
>>> # set default states during post-reset
>>> prim.post_reset()
set_linear_velocity(velocity: ndarray) None#

Set the linear velocity of the root articulation prim

Warning

This method will immediately set the articulation state

Parameters:

velocity (np.ndarray) – 3D linear velocity vector. Shape (3,).

Hint

This method belongs to the methods used to set the articulation kinematic state:

set_linear_velocity, set_angular_velocity, set_joint_positions, set_joint_velocities, set_joint_efforts

Example:

>>> prim.set_linear_velocity(np.array([0.1, 0.0, 0.0]))
set_local_pose(
translation: Sequence[float] | None = None,
orientation: Sequence[float] | None = None,
) None#

Set prim’s pose with respect to the local frame (the prim’s parent frame).

Warning

This method will change (teleport) the prim pose immediately to the indicated value

Parameters:
  • translation (Optional[Sequence[float]], optional) – translation in the local frame of the prim (with respect to its parent prim). shape is (3, ). Defaults to None, which means left unchanged.

  • orientation (Optional[Sequence[float]], optional) – quaternion orientation in the local frame of the prim. quaternion is scalar-first (w, x, y, z). shape is (4, ). Defaults to None, which means left unchanged.

Hint

This method belongs to the methods used to set the prim state

Example:

>>> prim.set_local_pose(translation=np.array([1.0, 0.5, 0.0]), orientation=np.array([1., 0., 0., 0.]))
set_local_scale(
scale: Sequence[float] | None,
) None#

Set prim’s scale with respect to the local frame (the prim’s parent frame).

Parameters:

scale (Optional[Sequence[float]]) – scale to be applied to the prim’s dimensions. shape is (3, ). Defaults to None, which means left unchanged.

Example:

>>> # scale prim 10 times smaller
>>> prim.set_local_scale(np.array([0.1, 0.1, 0.1]))
set_sleep_threshold(threshold: float) None#

Set the threshold for articulations to enter a sleep state

Search for Articulations and Sleeping in PhysX docs for more details

Parameters:

threshold (float) – sleep threshold

Example:

>>> prim.set_sleep_threshold(0.01)
set_solver_position_iteration_count(count: int) None#

Set the solver (position) iteration count for the articulation

The solver iteration count determines how accurately contacts, drives, and limits are resolved. Search for Solver Iteration Count in PhysX docs for more details.

Warning

Setting a higher number of iterations may improve the fidelity of the simulation, although it may affect its performance.

Parameters:

count (int) – position iteration count

Example:

>>> prim.set_solver_position_iteration_count(64)
set_solver_velocity_iteration_count(count: int)#

Set the solver (velocity) iteration count for the articulation

The solver iteration count determines how accurately contacts, drives, and limits are resolved. Search for Solver Iteration Count in PhysX docs for more details.

Warning

Setting a higher number of iterations may improve the fidelity of the simulation, although it may affect its performance.

Parameters:

count (int) – velocity iteration count

Example:

>>> prim.set_solver_velocity_iteration_count(64)
set_stabilization_threshold(threshold: float) None#

Set the mass-normalized kinetic energy below which the articulation may participate in stabilization

Search for Stabilization Threshold in PhysX docs for more details

Parameters:

threshold (float) – stabilization threshold

Example:

>>> prim.set_stabilization_threshold(0.005)
set_visibility(visible: bool) None#

Set the visibility of the prim in stage

Parameters:

visible (bool) – flag to set the visibility of the usd prim in stage.

Example:

>>> # make prim not visible in the stage
>>> prim.set_visibility(visible=False)
set_world_pose(
position: Sequence[float] | None = None,
orientation: Sequence[float] | None = None,
) None#

Ses prim’s pose with respect to the world’s frame

Warning

This method will change (teleport) the prim pose immediately to the indicated value

Parameters:
  • position (Optional[Sequence[float]], optional) – position in the world frame of the prim. shape is (3, ). Defaults to None, which means left unchanged.

  • orientation (Optional[Sequence[float]], optional) – quaternion orientation in the world frame of the prim. quaternion is scalar-first (w, x, y, z). shape is (4, ). Defaults to None, which means left unchanged.

Hint

This method belongs to the methods used to set the prim state

Example:

>>> prim.set_world_pose(position=np.array([1.0, 0.5, 0.0]), orientation=np.array([1., 0., 0., 0.]))
set_world_velocity(velocity: ndarray)#

Set the articulation root velocity

Parameters:

velocity (np.ndarray) – linear and angular velocity to set the root prim to. Shape (6,).

class IMUSensor(
prim_path: str,
name: str | None = 'imu_sensor',
frequency: int | None = None,
dt: float | None = None,
translation: ndarray | None = None,
position: ndarray | None = None,
orientation: ndarray | None = None,
linear_acceleration_filter_size: int | None = 1,
angular_velocity_filter_size: int | None = 1,
orientation_filter_size: int | None = 1,
)#

Bases: BaseSensor

initialize(physics_sim_view=None) None#

Create a physics simulation view if not passed and using PhysX tensor API

Note

If the prim has been added to the world scene (e.g., world.scene.add(prim)), it will be automatically initialized when the world is reset (e.g., world.reset()).

Parameters:

physics_sim_view (omni.physics.tensors.SimulationView, optional) – current physics simulation view. Defaults to None.

Example:

>>> prim.initialize()
get_current_frame(read_gravity=True) dict#
resume() None#
pause() None#
is_paused() bool#
set_frequency(value: int) None#
get_frequency() int#
get_dt() float#
apply_visual_material(
visual_material: VisualMaterial,
weaker_than_descendants: bool = False,
) None#

Apply visual material to the held prim and optionally its descendants.

Parameters:
  • visual_material (VisualMaterial) – visual material to be applied to the held prim. Currently supports PreviewSurface, OmniPBR and OmniGlass.

  • weaker_than_descendants (bool, optional) – True if the material shouldn’t override the descendants materials, otherwise False. Defaults to False.

Example:

>>> from isaacsim.core.api.materials import OmniGlass
>>>
>>> # create a dark-red glass visual material
>>> material = OmniGlass(
...     prim_path="/World/material/glass",  # path to the material prim to create
...     ior=1.25,
...     depth=0.001,
...     thin_walled=False,
...     color=np.array([0.5, 0.0, 0.0])
... )
>>> prim.apply_visual_material(material)
get_applied_visual_material() VisualMaterial#

Return the current applied visual material in case it was applied using apply_visual_material or it’s one of the following materials that was already applied before: PreviewSurface, OmniPBR and OmniGlass.

Returns:

the current applied visual material if its type is currently supported.

Return type:

VisualMaterial

Example:

>>> # given a visual material applied
>>> prim.get_applied_visual_material()
<isaacsim.core.api.materials.omni_glass.OmniGlass object at 0x7f36263106a0>
get_default_state() XFormPrimState#

Get the default prim states (spatial position and orientation).

Returns:

an object that contains the default state of the prim (position and orientation)

Return type:

XFormPrimState

Example:

>>> state = prim.get_default_state()
>>> state
<isaacsim.core.utils.types.XFormPrimState object at 0x7f33addda650>
>>>
>>> state.position
[-4.5299529e-08 -1.8347054e-09 -2.8610229e-08]
>>> state.orientation
[1. 0. 0. 0.]
get_local_pose() Tuple[ndarray, ndarray]#

Get prim’s pose with respect to the local frame (the prim’s parent frame)

Returns:

first index is the position in the local frame (with shape (3, )). Second index is quaternion orientation (with shape (4, )) in the local frame

Return type:

Tuple[np.ndarray, np.ndarray]

Example:

>>> # if the prim is in position (1.0, 0.5, 0.0) with respect to the world frame
>>> position, orientation = prim.get_local_pose()
>>> position
[0. 0. 0.]
>>> orientation
[0. 0. 0.]
get_local_scale() ndarray#

Get prim’s scale with respect to the local frame (the parent’s frame)

Returns:

scale applied to the prim’s dimensions in the local frame. shape is (3, ).

Return type:

np.ndarray

Example:

>>> prim.get_local_scale()
[1. 1. 1.]
get_visibility() bool#
Returns:

true if the prim is visible in stage. false otherwise.

Return type:

bool

Example:

>>> # get the visible state of an visible prim on the stage
>>> prim.get_visibility()
True
get_world_pose() Tuple[ndarray, ndarray]#

Get prim’s pose with respect to the world’s frame

Returns:

first index is the position in the world frame (with shape (3, )). Second index is quaternion orientation (with shape (4, )) in the world frame

Return type:

Tuple[np.ndarray, np.ndarray]

Example:

>>> # if the prim is in position (1.0, 0.5, 0.0) with respect to the world frame
>>> position, orientation = prim.get_world_pose()
>>> position
[1.  0.5 0. ]
>>> orientation
[1. 0. 0. 0.]
get_world_scale() ndarray#

Get prim’s scale with respect to the world’s frame

Returns:

scale applied to the prim’s dimensions in the world frame. shape is (3, ).

Return type:

np.ndarray

Example:

>>> prim.get_world_scale()
[1. 1. 1.]
is_valid() bool#

Check if the prim path has a valid USD Prim at it

Returns:

True is the current prim path corresponds to a valid prim in stage. False otherwise.

Return type:

bool

Example:

>>> # given an existing and valid prim
>>> prims.is_valid()
True
is_visual_material_applied() bool#

Check if there is a visual material applied

Returns:

True if there is a visual material applied. False otherwise.

Return type:

bool

Example:

>>> # given a visual material applied
>>> prim.is_visual_material_applied()
True
property name: str | None#

Returns: str: name given to the prim when instantiating it. Otherwise None.

Used to query if the prim is a non root articulation link

Returns:

True if the prim itself is a non root link

Return type:

bool

Example:

>>> # for a wrapped articulation (where the root prim has the Physics Articulation Root property applied)
>>> prim.non_root_articulation_link
False
post_reset() None#

Reset the prim to its default state (position and orientation).

Note

For an articulation, in addition to configuring the root prim’s default position and spatial orientation (defined via the set_default_state method), the joint’s positions, velocities, and efforts (defined via the set_joints_default_state method) are imposed

Example:

>>> prim.post_reset()
property prim: pxr.Usd.Prim#

Returns: Usd.Prim: USD Prim object that this object holds.

property prim_path: str#

Returns: str: prim path in the stage

set_default_state(
position: Sequence[float] | None = None,
orientation: Sequence[float] | None = None,
) None#

Set the default state of the prim (position and orientation), that will be used after each reset.

Parameters:
  • position (Optional[Sequence[float]], optional) – position in the world frame of the prim. shape is (3, ). Defaults to None, which means left unchanged.

  • orientation (Optional[Sequence[float]], optional) – quaternion orientation in the world frame of the prim. quaternion is scalar-first (w, x, y, z). shape is (4, ). Defaults to None, which means left unchanged.

Example:

>>> # configure default state
>>> prim.set_default_state(position=np.array([1.0, 0.5, 0.0]), orientation=np.array([1, 0, 0, 0]))
>>>
>>> # set default states during post-reset
>>> prim.post_reset()
set_dt(value: float) None#
set_local_pose(
translation: Sequence[float] | None = None,
orientation: Sequence[float] | None = None,
) None#

Set prim’s pose with respect to the local frame (the prim’s parent frame).

Warning

This method will change (teleport) the prim pose immediately to the indicated value

Parameters:
  • translation (Optional[Sequence[float]], optional) – translation in the local frame of the prim (with respect to its parent prim). shape is (3, ). Defaults to None, which means left unchanged.

  • orientation (Optional[Sequence[float]], optional) – quaternion orientation in the local frame of the prim. quaternion is scalar-first (w, x, y, z). shape is (4, ). Defaults to None, which means left unchanged.

Hint

This method belongs to the methods used to set the prim state

Example:

>>> prim.set_local_pose(translation=np.array([1.0, 0.5, 0.0]), orientation=np.array([1., 0., 0., 0.]))
set_local_scale(
scale: Sequence[float] | None,
) None#

Set prim’s scale with respect to the local frame (the prim’s parent frame).

Parameters:

scale (Optional[Sequence[float]]) – scale to be applied to the prim’s dimensions. shape is (3, ). Defaults to None, which means left unchanged.

Example:

>>> # scale prim 10 times smaller
>>> prim.set_local_scale(np.array([0.1, 0.1, 0.1]))
set_visibility(visible: bool) None#

Set the visibility of the prim in stage

Parameters:

visible (bool) – flag to set the visibility of the usd prim in stage.

Example:

>>> # make prim not visible in the stage
>>> prim.set_visibility(visible=False)
set_world_pose(
position: Sequence[float] | None = None,
orientation: Sequence[float] | None = None,
) None#

Ses prim’s pose with respect to the world’s frame

Warning

This method will change (teleport) the prim pose immediately to the indicated value

Parameters:
  • position (Optional[Sequence[float]], optional) – position in the world frame of the prim. shape is (3, ). Defaults to None, which means left unchanged.

  • orientation (Optional[Sequence[float]], optional) – quaternion orientation in the world frame of the prim. quaternion is scalar-first (w, x, y, z). shape is (4, ). Defaults to None, which means left unchanged.

Hint

This method belongs to the methods used to set the prim state

Example:

>>> prim.set_world_pose(position=np.array([1.0, 0.5, 0.0]), orientation=np.array([1., 0., 0., 0.]))